Laser-induced mixing in microfluidic channels.

نویسندگان

  • Amy N Hellman
  • Kaustubh R Rau
  • Helen H Yoon
  • Stephanie Bae
  • James F Palmer
  • K Scott Phillips
  • Nancy L Allbritton
  • Vasan Venugopalan
چکیده

We demonstrate a novel strategy for mixing solutions and initiating chemical reactions in microfluidic systems. This method utilizes highly focused nanosecond laser pulses from a Q-switched Nd:YAG laser at lambda = 532 nm to generate cavitation bubbles within 100- and 200-microm-wide microfluidic channels containing the parallel laminar flow of two fluids. The bubble expansion and subsequent collapse within the channel disrupts the laminar flow of the parallel fluid streams and produces a localized region of mixed fluid. We use time-resolved imaging and fluorescence detection methods to visualize the mixing process and to estimate both the volume of mixed fluid and the time scale for the re-establishment of laminar flow. The results show that mixing is initiated by liquid jets that form upon cavitation bubble collapse and occurs approximately 20 micros following the delivery of the laser pulse. The images also reveal that mixing occurs on the millisecond time scale and that laminar flow is re-established on a 50-ms time scale. This process results in a locally mixed fluid volume in the range of 0.5-1.5 nL that is convected downstream with the main flow in the microchannel. We demonstrate the use of this mixing technique by initiating the horseradish peroxidase-catalyzed reaction between hydrogen peroxide and nonfluorescent N-acetyl-3,7-dihydroxyphenoxazine (Amplex Red) to yield fluorescent resorufin. This approach to generate the mixing of adjacent fluids may prove advantageous in many microfluidic applications as it requires neither tailored channel geometries nor the fabrication of specialized on-chip instrumentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixing of the Immiscible Liquids in the Entrance Region of a T-Type Chamber Using Laser Induced Fluorescence (LIF) Method

A Laser Induced Fluorescence technique (LIF) has been used to study the mixing behavior of two emerging streams in a T-Type mixing chamber. A mixing index on the basis of digital image light intensities is calculated. It has been shown that averaging over more than 800 images leads to a stable mixing index calculation. Moreover, the effect of equal and un-equal flow rates on the mixing behavior...

متن کامل

Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing.

In this study, we incorporated mixing units of three-dimensional (3D) interconnected pore network inside microfluidic channels by combining single prism holographic lithography and photolithography. 3D pore network structures were generated by the interference of four laser beams generated by a truncated triangular pyramidal prism. The levelling between the 3D porous structures and the channel ...

متن کامل

Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing.

The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to allow inspection of the fluids within t...

متن کامل

Waste water ammonia stripping intensification using microfluidic system

This paper reports the results of experimentally removing ammonia from synthetically prepared ammonia solution using a micro scale mixing loop air stripper. Effects of various operational parameters (such as: pH, air flow rate, wastewater flow rate and initial ammonia concentration) were evaluated. By increasing the pH from 10 to 12.25 the amount of KLa increased from 0.26 to 0.73 hr-1. A consi...

متن کامل

An Implementation of a Microfluidic Mixer and Switch Using Micromachined Acoustic Transducers

This paper presents the results of fluidic switching and mixing, performed in microfluidic channels, integrated with micromachined acoustic transducers. The transducers operate at 400 MHz while the microfluidic channels are made by casting polydimethylsiloxane (PDMS) on silicon moulds. Rapid switching is incorporated by applying pressure waves in one of the two outlet channels to get preferenti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 79 12  شماره 

صفحات  -

تاریخ انتشار 2007